Applying Hodge theory to detect Hamiltonian flows
نویسندگان
چکیده
We prove that when Hodge theory survives on non-compact symplectic manifolds, a compact symplectic Lie group action having fixed points is necessarily Hamiltonian, provided the associated almost complex structure preserves the space of harmonic one-forms. For example, this is the case for complete Kähler manifolds for which the symplectic form has an appropriate decay at infinity. This extends a classical theorem of Frankel for compact Kähler manifolds to complete non-compact Kähler manifolds.
منابع مشابه
m at h . D G ] 2 4 Ju n 20 04 CANONICAL EQUIVARIANT EXTENSIONS USING CLASSICAL HODGE THEORY
Lin and Sjamaar have used symplectic Hodge theory to obtain canonical equivariant extensions for Hamiltonian actions on closed symplectic manifolds that have the strong Lefschetz property. Here we obtain canonical equivariant extensions much more generally by means of classical Hodge theory.
متن کامل. D G ] 2 4 Ju n 20 04 CANONICAL EQUIVARIANT EXTENSIONS USING CLASSICAL HODGE THEORY
Lin and Sjamaar have used symplectic Hodge theory to obtain canonical equivariant extensions for Hamiltonian actions on closed symplectic manifolds that have the strong Lefschetz property. Here we obtain canonical equivariant extensions much more generally by means of classical Hodge theory.
متن کاملCanonical equivariant extensions using classical Hodge theory
In [4], Lin and Sjamaar show how to use symplectic Hodge theory to obtain canonical equivariant extensions of closed forms in Hamiltonian actions of compact connected Lie groups on closed symplectic manifolds which have the strong Lefschetz property. In this paper, we show how to do the same using classical Hodge theory. This has the advantage of applying far more generally. Our method makes us...
متن کاملA Hamiltonian Vorticity-dilatation Formulation of the Compressible Euler Equations
Using the Hodge decomposition on bounded domains the compressible Euler equations of gas dynamics are reformulated using a density weighted vorticity and dilatation as primary variables, together with the entropy and density. This formulation is an extension to compressible flows of the well-known vorticity-stream function formulation of the incompressible Euler equations. The Hamiltonian and a...
متن کاملEffective Hamiltonian of Electroweak Penguin for Hadronic b Quark Decays
In this research we work with the effective Hamiltonian and the quark model. We investigate the decay rates of matter-antimatter of quark. We describe the effective Hamiltonian theory and apply this theory to the calculation of current-current ( ), QCD penguin ( ), magnetic dipole ( ) and electroweak penguin ( ) decay rates. The gluonic penguin structure of hadronic decays is studied thro...
متن کامل